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A game situation is considered in which the players are two points of a manifold with a non-degenerate 

metric, each with controllable velocity. The payoff in the game is the minimum distance between the 

players in a semi-infinite interval of the time of motion. The first player minimizes the payoff, the 

second maximizes it. The phase space of the game is divided into subdomains. IO one (the primary 

domain) the value of the game is the initial distance between the players, in the other (the secondary 

domain) it is less than the initial distance. It is shown that the boundary of the primary domain consists 

of singular optimal paths (11, and the regular paths approach it from both sides. Necessary conditions 

are established for the singular surface to be optimal and the equations of the singular paths are 

derived. They are of the same form as the analogous relationships in the game of pursuit [2]. 

A necessary optimality condition, formulated in terms of the geodesic distance between players, is 

found for the primary domain in the form of an inequality, enabling the boundary of the singular 

surface to be constructed. The existence of this boundary is a necessary condition for the secondary 

domain to be non-empty. A generalization of Bellman’s equation is obtained it is shown that the value 

of the game is constant along secondary optimal paths. 00 singular paths the distance between the 

players remains constant. The necessary conditions obtained here provide the basis for an algorithm 

for constructing optimal paths and the value of the game in the oeighbourhood of singularities. 

The algorithm is then used to work out a complete solution of the problem of approach on a two- 

dimensional cone, constructing the level curves of the value of the game and an optimal phase portrait. 

The set of cones for which the secondary domain is empty, i.e. for which the distance between the 

players is the value throughout the game space, is determined. 

1. FORMULATION OF THE PROBLEM 

INAN ~-DIMENSIONAL manifold N, we consider the motion of two points, P (the pursuer) and E 
(the evader), which is governed by the following relationships 

P:x “U, u E El (x), E : y’ = u, uEE&), v> 1 

E,(x)= (uER”: iut,<a 1, iuI?j = (G(x)u,u) 
(1.1) 

Here x and y are the local coordinate vectors of the points P and E, respectively, u and 2) are 
their velocities at the point x of N, and G(x) is the metric tensor of the manifold-a non- 
singular positive definite matrix. Angle brackets denote the standard scalar product, i.e. the 
sum of products of the vector components. 

In a previous paper, we considered a game of pursuit in which the player dynamics were 
similar to (l.l), but on the assumption that the pursuer enjoys superiority as to velocity, v < 1. 
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Since the velocity of the pursuer in (1.1) is less than that of the evader, the point E may well 
evade I-capture, where 1 is the capture radius [4]. Moreover, in the Euclidean case, when G(x) 
is the identity matrix throughout the space, player E may continuously increase the distance 
between P and E. In an arbitrary manifold, however, player P may succeed in reducing the 
initial distance between P and E. 

In this connection, we will consider a positional differential game of points P and E with 
dynamics (1.1) over a semi-infinite time interval, in which player P tries to reduce the distance 
from himself to player E as much as possible, while the latter pursues the opposite objective. 

Thus, the objective functional in our game problem is the quantity 

J= oTy< L(x(r), v(r)) (l-2) 
m 

where L is the length of the minimum geodesic curve connecting the players. It is a solution of 
the following variational problem 

,“’ ~(GW5’, t’)du L (4 v) = mint (.) do 

5(uo) = x, t(ul)=Y (1.3) 

where {(a), o,, C o < 0, is a piecewise-smooth curve connecting the players. We will assume 
that the minimum (1.3) is attained in this class of curves. Using the first variation formula, we 
derive expressions (1.4) for the partial derivatives of the extremum value (a local minimum) of 
the functional (1.3) and corollaries (1.5) and (1.6) of those expressions, valid at points where 
L (x, y) is differentiable 

L,(z) = G(x)a(z), L,,(z) =G@)b(z), z=(x,y)ER*” 

a=-.g’(uO)lI~+JO)lx, b=5’(u~)/l~‘(u,)ly (1.4) 

where a and b are unit tangent vectors at the points P and E of the geodesic, directed toward 
the exterior of the curve PE; z = (x, y) is the local coordinate vector in the phase space of the 
game NxN= N2. 

Formulae (1.4) imply the eikonal equations 

(G-’ (x)L,, L,) = 1, (G-‘@)L,,,L,,) =1 (1.5) 

and the following extremum property of the players’ motion along a geodesic 

mh,max,L’=max,min,L’=v-1 

L’ (x,y)= CL,, u) + CL,, u) 0.6) 

u * (z) =-G-l (x) L,(z) = -a (z), u* (z) = vG-‘(Y) L.,(z) = vb (z) 

Here and below extrema with respect to u and u are calculated with respect to the ellipsoids 
(1.2). The quantities u * and V* in (1.6) may be found by using the method of undetermined 
Lagrange multipliers. 

We will assume that the manifold N is such that the global minimum (1.3) is attained on at 
most two curves. Let r, be the set of boundary values z =(x, y) in (1.3) for which two minima 
exist. Let us assume that a non-empty neighbourhood of l-‘,‘, exists in which smooth functions 
L+(z), L-(z) are defined and the global minimum can be written in the form 

L (z) = min [L + (z), L-(z)] (1.7) 



A differential game of simple approach in manifolds 49 

2. THE STRUCTURE OF THE SOLUTION AND THE NECESSARY 
OPTIMALITY CONDITIONS 

We will assume that the value V(z) of the game (l.l), (1.2) exists and is continuous and 
directionally differentiable. Note the obvious inequality V(z) G L(z), z E 2, which also follows 
from (1.3) and means that the least distance between the players cannot exceed the initial 
distance. Here Z is the domain in some system of local coordinates of N’. The su~omain 
2, c Z in which V(z) = L(z) will be called the primary domain, and the subdomain Z, = Z \ Z, 
the secondary domain. If t E Z,, then V(z) c L(z). 

Thus, by definition, player P, starting from a point of the secondary domain, can reduce the 
initial distance between the players. 

The function L as expressed in (1.7) is differentiabIe with respect to the direction w = (u, u). 
At points of smoothness the directional derivative dLl& is identical with the total derivative 
with respect to time: dL/dv = jL’. 

Lemma 1. In the primary domain Z,, the following condition holds 

mm, max, ?IL/dw > 0 (2.1) 

Indeed, if this were false, there would be a positional control for player P making dL/dkt -C 0. This 
means that the distance LA would be less than the initial distance after a sufficiently short time interval 
A > 0, contrary to the definition of the primary domain. 

Lemma 2. The following generalized necessary conditions for optimality hold for the value 
of the game V(z) secondary domain 

min, max, a V/&v > 0 > max, minu a V/aw (2.2) 

Inequalities (2.2) may be verified by indirect reasoning: the reverse of the left (right) inequality in (2.2) 

would imply that player P (E) could achieve an outcome superior to the value of the game [3]_ 
At points of smoothness, inequalities (2.2) become equalities and imply Bellman’s equation 

F (2, PI = -._jtG-' (x) V,, F’,t + v ,/(G-' (~1 V,,, YjJ = 0 (2.3) 

which means that dVldt= 0 along an optimal path, i.e. the value of the game is constant along optimal 

paths. This also follows from the form of the functional (1.3) and the definition of the secondary domain. 
Indeed, if z(t) is a path starting at a point z” E Z,, then L(z(r))’ 2 L(z(r,)), where t. is either the first time 
the point hits the boundary JZ,, or 1, = - if the path never leaves Z,. By the definition of 6, we have 

z(t)oZ2, Ogt< t.. If the above inequality is false, there is a time tl -CL such that L.(t)< L(G) for 

r, 55 t G L. This means that the value of the game at z = z(r,) is the initial distance L(t,), i.e. z(f,) E Z,, 
contrary to the condition z(r,) E Z,. 

Thus, the value of the game in the secondary domain is equal to the distance L(L), which is reached at 

time t, = - if the path never leaves Z,, or at the moment the boundary I of Z, is reached: r = dZ,. 
Note that, unlike the pursuit problem considered in [3j, a primary solution in the approach problem 

does not satisfy Bellman’s equation for the secondary domain. Indeed, by the eikonai equations (1.Q 
substitution of a primary solution into the function (2.3) yields the following equation for L(z) and a 
corresponding expression for the primary velocity 

F(.z,L&))=v-1, z’=Fp(z,L,(z)) (2.4) 

Bellman’s equation turns out to be true only when v= 1. In the domain in which V(z) is twice smooth, 

the players’ optimal paths are defined by the characteristic system of equations (2.3) 

z’=Fp, p’= -Fz @5) 
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If a pair z(f) andp(f) is a solution of system (2.9, z(t)=(x(f), y(f)), then one can show that both 
functions x(t) and y( t) are extremals of problem (1.3). Thus, in regular motion the players move along a 
geodesic-generally a different geodesic for each player. 

3. THE BOUNDARY OF THE SINGULAR SURFACE 

Our previous discussions show that optimal paths may cross over from the secondary to the 
primary domain. The optimal behaviour of the players in the primary domain is not necessarily 
unique. In this situation player P plays a passive role, since the optimal outcome of the game- 
the distance between the players-is fixed from the start, and the future behaviour of P makes 
no difference. On the other hand, player E must have at his disposal some way to guarantee 
that the initial outcome should not become less favourable. This might be, say, an open-loop 
control of E over a semi-infinite time interval, or a positional control-a field of velocities 
guaranteeing local non-decrease of the distance. At points where L(z) is differentiable such a 
field is defined, for example, by the primary control u*(z) in (1.6). At points where L is not 
smooth a favourable control for E may require information about the instantaneous value of 
the control of P, or the outcome may turn out to be attainable with E-accuracy. 

We will use Lemma 1 to determine the necessary conditions that define the surface I in an 
optimal synthesis. 

The assumptions of Lemma 1 are trivially satisfied at points where L is smooth, by property (1.6). The 
function (1.7) is not smooth on the surface I, = (z E Z, L’(z) = L-(z)]. 

Let us determine what part of r, lies in Z,. We will use condition (2.1). On I, we have iJLldu= 
min[L+‘, L-‘I, L*’ = (L:, u)+(L& u), w=(u, u). Calculations similar to those in the proof of the theorem 

of [3] give 

miq, max, min* L* = pin[O, F (z, R,(z))] 

R 0) = a+ (z)+L_(z))/2 

(for the definition of F, see (2.3)). 
Thus, by I_.emma 1, Z, contains only the part I, of I, defined by the condition F(z, R,(z)aO. Denote 

the boundary of r, by B. Using (l.l), (1.4) and (2.3) express the formula F(z, R,(z)= 0 in terms of the 
norms of the vectors a+ +u-, 6’ + b-. Then the manifold B is defined by two equalities 

B:L+(z)=L-(2). la++a-l,=vlb+tb-ly (3.1) 

Thus, the set B is also a part of the required boundary surface, B c r. To construct r, we can use the 

method of singular characteristics [3], first finding the Cauchy data in the boundary manifold B. To apply 

the technique of [3], we need three necessary optimality conditions in the form of equalities in terms of a 
point z E r and a corresponding quantity p-the limiting value of the gradient of V in the secondary 
domain. 

As the first two conditions we use Bellman’s equation (2.3) and the continuity of the value of the game: 
V(z) = L(z), z E r. The third condition may be obtained by assuming that r consists of singular optimal 
paths. Then, due to the uniqueness of the extrema (2.2) a tangency condition (F,, p-q) =O, p= Vz, 
q = L, will hold at the points of I, that is, the paths leaving Z2 reach I as tangents (Fig. 1). The tangency 
condition may also be verified independently by varying the surface r, as was done in the proof of the 
theorem in [4]. To that end we need only assume that paths reaching r from Z, do so in a finite time (the 
time t. in Sec. 2 is finite). 

Thus, we shall assume that paths from Z, reach the surface in a finite time. Then the paths reach the 

surface as tangents, and the following three optimality conditions hold on r 

Fo (z. p) = 0, F, (z, V)=L- V=O, F-1 (z. p) = WI,, p - q) = o (3.2) 
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r’ 

Here p is the limiting value of the gradient of V in the secondary domain, q=L, =(L,, Z,,). The first 
equation in (3.2) is Belhnan’s equation, the second is the cont~uity condition for the value, and the third 
is the condition that regular paths from the secondary domain are tangent to the singular surface. 

According to the technique of [3], the equations of the singular characteristics are written in terms of 
the Hamiltonian and the corresponding characteristic system 

iuH = (F-14) Fo + fF,Fof F-1 + i FoF-iI Ft 

2*=x P' p .=--ii,--Hffp, V’= Q&HP> 

Here ~1 is the homogeneity multiplier and {F, G) = (F, + pFV, Gp)- (G, + PC,, F,,) are the Jacobi brackets. 
The characteristic system for a function < of the type (3.2) may be written, in view of the identity 

Fml s (F,F,), in the form 

.Z’=Fop, P'=-F-o,-.fFofF,Fo ))/ IFat P’oF,fj fp-4) (3.3) 

These equations can be used to construct the singular surface if the corresponding value of the vector p 
is known for t E Z3. 

Differentiating the equality V(z)- L(r) = 0 with respect to the 2n - 2 tangent directions of B, we obtain, 
besides the first and third equalities of (3.2), a system of equations for p which has the follo~ng solution 
[3, Lemma 51 

p(z) =R,(z)~‘(q+(Z)+q-(z))/2, ZEB, (q*=L;) (3.4) 

To construct the singular surface l”=&?z, we must integrate (3.3) in inverse time with initial values 
2 = to, ~~(q*(z”)+q-(zo))/2, z” E B. 

If G is the identity matrix in some domain, the function Fin (2.3) for that domain will have the form 

System (3.3) is simplified 

z’=F p> p”=I(S,,Fp.F)f(Fppq,q)]03-q) (34 

We note some properties of primary paths in the neighbourhood of B. The conditions for the primary 
paths, i.e. integral curves of system (2.4), to touch the surface I’, on both sides are 

(Fp Cc q “1, rl +-q-)=0, oFp(z,q-), q+--q-)=0* qf= Lz” (3.7) 
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A check shows that both equalities hold simultaneously in some set B, which, unlike the situation in 
the pursuit problem in [3], is a subset of the primary domain, B, c r,. On the part of r, between B and 
B,, the primary paths approach from both sides. The other part of r,, as in the pursuit problem, is a 
dispersal surface, i.e. the primary paths leave it in both directions (Fig. 1). Note that if v = 1 the sets B and 
B, are identical. In that case, the above-mentioned system of equations for p has, besides the solution 
(3.4), a one-parameter family of solutions 

l+A l-h 
PA = -q++ --f--- q- 

2 

This means that the gradient of V(z) cannot be extended continuously to the set B, which may be 

approached by a one-parameter family of solutions of system (2.5)-an integral funnel. 
The paths from the primary domain approach the singular surface r and never leave it, as was the case 

for the equivocal surface in the pursuit problem. Thus, qualitatively speaking, the surface r and the part 
of r, between B, and B recall a universal surface as defined in [l]. 

These assertions may be proved along lines analogous to those in [3], using the relationships (2.3) 
(2.4), (3.2) and (3.4). 

Based on the considerations of this section, we can propose a four-stage algorithm that will 
construct optimum paths and compute the value of the game in the neighbourhood of singular 
surfaces. 

In the fist stage, the variational problem (1.3) is solved, to construct the functions L’(z) and 
L-(z) in a domain which may well be larger than Z,. This yields the primary solution. 

In the second stage, the relationships (3.1) and (1.4) are used to construct the set B. If it is 
empty, the analysis of the problem is complete, and the primary solution is a solution of the 
game in the whole space. If B is not empty, one goes on to the third stage. 

In the third stage, the branches r’ and I- of the enveloping singular surface are const- 
ructed. To that end one integrates system (3.3) in retrograde time with initial data z= z”, 
p= R&z’), to E B, using the functions L’ and q+ (15 and q-) for the branch I’ (r-). The 
surface I separates the domains Z, and Z,. 

In the fourth stage, the domain Z, is filled up by optimal paths by integrating system (2.5) in 
retrograde time with initial data z = z”, p = p(z’), z” E r. 

4. THE PROBLEM OF APPROACH ON A TWO-DIMENSIONAL CONE 

We will now let N be a convex conical surface K +0 (K is the cone without its apex 0) in 
Euclidean 3-space; the metric on N is that of the latter. To describe the players’ movements on 
the cone, we introduce a Euclidean local system of coordinates as follows. Fold up the cone 
along an arbitrary pair of opposing generators y+, y- c K into a plane two-sided angle of 
magnitude a, 0~ a - -= 1~. In the plane of this angle, take a Cartesian (rectangular) system of 
coordinates with origin at the apex of the cone and abscissa axis along the bisector (Fig. 2). 

FIG. 2. 
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The coordinates x = (x1, x2), y = (y,, y2) of points P and E yield a Euclidean system of local 
coordinates in which the equations of motion of these points are 

p:x’=u, lul = d/u: +u,z <l; E:y’=u, 1111 <,,,>I (4.1) 

For a detailed derivation of these and some of the other formulae in this section we refer the 
reader to [3]. The above transformation of the cone does not change the lengths of geodesics. 
We may thus interpret a game of approach on the cone as an equivalent game on the angle. 
The geodesics on the angle that yield the local minima L* of (1.7) form two families of two- 
armed polygonal lines, of lengths 

L* (z)=[lx12 + Iyl * -2 (XlYl -X*Y*) coscri-‘2(x*y~ + xly*)sina]” (4.2) 

where (4, x2), O;, y2) are the local Euclidean coordinates of P and E, respectively. The 
functions (4.2) define a solution to the first stage of the algorithm in Sec. 3. They are obtained 
on the assumption that P and E lie on different sheets of the angle; this may be ensured by 
suitable choice of the generators y*. 

We now introduce self-similar variables p, q and 2, related to the original variables as fol- 
lows: p= r/R, dtldz= R, where r and R are the distances of E and P respectively, from the 
apex, and Q, is the angle between them on the flattened surface of the cone. Note that the self- 
similar time z is related to the initial non-integrable differential relation. The equations of 
motion and the objective functional may be written in terms of the self-similar variables [3] as 
follows: 

, p =u1 -pui, (p’=u*Ip-242, Iu-i<l, IulGv 

J= min 
o<r<m 

41 +p* -2pcw expfi ul(OdO 

The quantity to be minimized in the functional J is equal to the quotient L/R at z = 0. 
The self-similar variables may be interpreted as follows. Equip the players with complex 

coordinates z, and zE in the flattened surface of the cone: z,, = z$?, zE = z$?. Then the 
quotient w = zE / z, = pe’(VBVp) is a complex number whose modulus and argument are precisely 
the self-similar variables p, 9. 

In self-similar variables the set B becomes a point with coordinates p= pB, (p = a. An 
equation for pB may be derived by using (4.2) and (3.1) To do this we observe that, because of 
the rotational symmetry of the cone, any point of the manifold may be put in the form (x1, 0, 
yl, 0). Suitable choice of the unit of measurement will equate one of the parameters X, or y, to 
any specified number, say, y, = 1. Then x1 = l/p,, and the equation for pe will be 

-I1 -pcosaI + VIP-cosd = 0 (4.3) 

Equation (4.3) has no roots in the domain lI, = ((a, v), a/2 ca d z, v> -1lcosa) of para- 
meter values; its root in the domain l-l, = II \ n,, Il = ((a, v) : 0 G a d 1c, v > -l}, however, is not 
unique. An analysis based on the necessary optimality conditions shows that in the optimum 
construction the domain II, can contain only one root 

pB = (1 + vcoscr)/(v + cosa), (01, u) E II, (4.4) 

On the separating curve ll. = ((a, v), a 3 ~12, v > -1lcosa) we have pe = 0. 
The geometrical meaning of the solution (4.4) is as follows. Consider the players’ motion 

along the opposing generators y+ and y-, with P moving toward the apex and E away from it. 
The players’ distances from the apex are linear functions of time: R = & -r, r = r, + w. In this 
motion we have L’(z) = L-(z) = (r* + R* - 2rRcosa)“‘. Substituting the functions r(r) and R (r) 
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into L (r, R) and minimizing L as a function of time, we see that r(t*)lR(t*) = p,, at the point of 
minimum t=t*. 

For the domain II, in which Eq. (4.3) has no roots, the domain Z, is empty, the value of the 
game is the initial distance between the players, and the algorithm of Sec. 3 is completed. 

For the domain II,, we must carry out the third and fourth stages of the algorithm. We first 
integrate the system of singular characteristics (3.6) with functions (3.5) (n=2) and (4.2), 
using standard initial data z, =(1/p,, 0, 1,O) and pB =x(q;+q;). Due to the symmet~ of 
the manifold, all the other paths that make up r are obtained by simple calculation from the 
standard ones (see [4]). Then, to fill out the domain Z,, we proceed in retrograde time from 
the points of the surface I, solving the first-order system (2.5) with the function (3.5) 

Figure 3, drawn in polar coordinates p and ‘p, shows a symmetric half of the synthesis pattern 
for II,. The curve BD represents the singular surface r. The point D(p = p,,, ~JJ = 0) is reached 
in a finite time, during which the distance between the players remains constant. If player E 
starts at some point of BD along the geodesic BD, the distance between the players begins to 
increase. IIowever, the path will then go off into the secondary domain and the final outcome 
for player E will be inferior. We have simulated such situations numerically. 

The segment OD is a dispersal curve, at whose endpoints the generalized necessary cond- 
itions for op~mality (2.2) are satisfied. 

Figure 3 shows the primary paths corresponding to motion of the players along the geode- 
sics connecting them. These paths either approach the singular surface I or go to the point 
p = v, tp = 0 in infinite time. The primary motions begin in a neighbourhood of the point p = 1, 
Q=O or on the dispersal part of the ray rp= [T, pa dv. Using the tangency conditions (3.7), 
one can show that a primary path will touch the ray q = a at p = 4 v. 

The primary paths may be constructed as a mapping z --+ p, rp of the integral curves of 
system (2.4). The parametric representation of these paths in polar coordinates p and rp is given 
by formulae (2.11) of [3], with the sole difference that the sign of tg Q” is reversed. Using the 
complex interpretation of the self-similar variables, one can show that the images of all regular 
paths are circles in the p, cp plane, Indeed, the primary and secondary regular paths of the 
players in the complex plane of the flattened cone lie along the straight lines 4(f) = z; + u’t, 
rE = zi +u*t, where z:, * u’, ZPY V* are the complex coordinates and velocities of the players 
and t is real time. This follows from the remark at the end of Sec. 2. For the homogeneous 
complex variable introduced previously, we have 

Fm.3. 
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This M0bius transformation maps the real axis of the z-plane into a circle in the w-plane. In the 
case of primary paths, the centres of these circles lie in the straight line perpendicular to the 
axis Q, = 0 and passing through the point p = (1 + v)/Z. 

The functions p,(v) and pa(v), plotted numerically for fixed a, are shown in Fig. 4 for 
a= 2arctgX in the interval [O, z/2]; Fig. 5 is a similar cons~u~tion for a= 2arctgK in the 
interval [~!2, z]. Let pe*, p. * denote the limits of pB and po as v + 00 for a c ~12. As is 
evident from formula (4.4), p8*= cosa. We will show that p,,*= l-sina. Consider the initial 
position of the players, represented by the point D in Fig. 3. If v is large enough, while the 
phase point moves from D to B in Fig. 3, player P traverses a fairly short distance. The limiting 
motion of the players along a singular path at v = m is as follows: player P remains stationary, 
while player E moves but remains at a constant distance from P. On the flattened surface of the 
cone, as shown in Fig. 6, the path of E is an arc of a circle. The length of the segment OE’ in 
Fig. 6 is pe*, and that of OP is one, i.e. the position PE’ is in the set B. Since pa* = cosa, it 
follows that PE’ has a length of sin a and is perpendicular to OE’, while the circular arc EE’ 
touches the segment OE’ at E’. The point E defines the initial position of the evader and the 
length of the segment OE is equal to the limiting value &* = 1 -sin a. 

Note that as v -+ 00 the game may be compared with the following limiting optimal control 
problem for players E, with player P remaining stationary. The object of player E is to reach 
some point on the cone sufficiently far from the apex compared with the distance OP. Player E 
may move along any continuous path, obeying any law of motion; in so doing he must try to 
maximize the minimum distance from P. 

A solution of this limiting problem may be constructed by means of simple geometrical 
arguments. If player E is initially outside the curvilinear triangle OEE’ of Fig. 6, then the 
optimum outcome is equal to the initial distance PE. The outcome for initial positions of E 
inside the triangle OEE’ is independent of E-it is sin a. The path of player E must then pass 
through the point E’ without penetrating the tangent circle, 

Figure 7 illustrates the level curves of the value of the game, in self-similar variables, for 
a= 2arctgX, v= 2 in the parameter domain II2 (these curves are symmetric about the 
horizontal axis). Since the value of the game for the domain 2, is equal to the initial distance 
between the players, the level curves will be circles 1 +p2 - 2cos9 = const about the point p = 1, 
(p=O. In Z2 the level curves must be plotted numerically. Knowing the level curves of the 
value of the game, we can approximate optimal controls 
optimal synthesis-at each point of the phase space. 

5. THE CASE v=l 

for both players-i.e. construct an 

The approach problem for v= 1 is interesting as it is intermediate between pursuit and approach 
problems in general and combines some of their properties. 

When v = 1 the sets Be and B are identical, pB = 1, and all of r, is a dispersal surface. A primary path 
-r. (a circle) exists which touches the ray 8 = a at pB. Computations show that the singular curve BD 
approaches this path as v + l+O. The algorithm proposed in Sec. 3 for constructing the singular surface 
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FIG. 7. 

is useless when Y = 1, because Eqs (3.3) and (3.6) become meaningless at the points of B. 

To complete the synthesis pattern, that is, to fill out the curvilinear triangle BOD (B=(l, a), D= (1, 
O)), with optimal secondary paths, we will make the following assumption. The path E is the boundary of 
the primary domain and all secondary paths touch it at B, i.e. they form an integral funnel of paths 
“flowing” out of the secondary domain at 3. The gradient p of the value of the game is discontinuous; it 
cannot be extended ~ntinuo~ly from the secondary domain to B. The one-parameter family (3.8) of 

limit values of the gradient of the function V(x,, x2, y,, yz) at z, =(I, 0, 1,O) has the form 

1 
P @I= = (0, h,U, h), IhI< 1, u = tgd2 

Ja’ + 1 

ptoo)=pg= ‘I, @‘+4-h Pw)=q* 

A one-parameter family of regular paths z (7, A) = z,, - F,(p(d))7, 7 zs 0 emanates from zB in retrograde 

time. By (!Ll), the path t (7, fl) coincides with a tangent primary path-the circle K in the p, V, plane, 
while the function z (7,0) in p, p variables corresponds to motion along the segment OB in Fig. 3. 

The intermediate paths ~(7, 2,) where 0~ A cl, form an integral funnel and fill out the triangle OBD 
(Fig. 3). 

As observed previously, all regular paths in polar coordinates p and rp are circles. In this case (v = l), all 
the secondary regular paths pass through the point B, where they touch the straight line OB, the latter is a 
lit element of the family-a circle of infinite radius. The centres of the circles in the family lie on the 
straight line perpendicular to OB through B . The formula for the radius is R = a lil, a = tgti. When 
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A = fl we obtain the boundary primary paths (the circle K); the value A= 0 corresponds to the straight- 

line path OB. 
The constructions of Sets 4 and 5 rely on the necessary conditions (2.1)-(2.3) and (3.1)-(3.7) for 

optimality. The question of whether these conditions are also sufficient requires further investigation. 
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